Teoría de xogos (XXV): Os piratas democráticos

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 16 de maio de 2011 Teoría de juegos XXV – Los piratas democráticos, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XXIV): A guerra de sexos (II).]

Este artigo tamén vai ser relativamente curtiño, se ben serán dous os conceptos que introduciremos: o de coalición e mais o de transferencia de utilidade. Para isto veremos como tres piratas reparten un botín que atoparon, e despois relacionarémolo cunha morea de artigos que xa fomos vendo anteriormente (poida que queiras revisalos cando os mencionemos).

Dobrón
Dobrón de ouro de 8 escudos.

O botín consiste en mil dobróns de ouro, que deben repartir democraticamente. Porque os nosos piratas Barbanegra, L’Olonnais e Roberts, por moi saqueadores, contrabandistas e asasinos que sexan, tamén son demócratas. Así que cada un deles pode propor a forma de repartición que desexe e, se a maioría deles está de acordo, acéptase esa repartición.

Unha pausa para pensar.

Seguir lendo

Advertisements

Breve historia do metro (XIV): Epílogo

[Esta é unha tradución adaptada do artigo orixinal de 16 de novembro de 2015 Breve historia del metro (epílogo), de Juan de Juan, que pode lerse nesta ligazón.]

[O artigo previo da serie é Breve historia do metro (XIII): A herdanza da expedición.]

Crystal Palace

Ao longo do século xix, o feito de que a misión do meridiano obtivera medicións contraditorias deveu en coñecemento xeral entre os astrónomos. De feito, a falla de exactitude do metro de platino non tiña que ver estritamente con estes erros, senón coa suposición errada dos científicos franceses de que a lonxitude do meridiano triangulado podería servir para derivar a lonxitude completa do dito meridiano.

O sistema métrico tornou a Francia cando o país volveu á valoración positiva da súa revolución. Isto ocorreu na Revolución de 1830, que depuxo os Borbóns e colocou a Luís Filipe de Orleáns á fronte do Estado. En 1837, o sistema métrico volveu ser impulsado, sobre todo, por Charles-Émile de Laplace e mais Claude-Louis Mathieu, isto é, o sucesor de Delambre, que xa era deputado daquela. A Asemblea votou a implantación do sistema en toda Francia a partir do 1 de xaneiro de 1840. Aquela medida foi moito máis racional ca a que tomaran décadas atrás. Agora si se fixeran as cousas ben, pois, tras moitos anos nos que o sistema decimal se ensinara nas escolas, podía garantirse unha entrada en vigor menos traumática, se ben non exenta de resistencia e mesmo de violencia. De todos os xeitos, en 1840 o sistema métrico levaba dúas décadas sendo obrigatorio nos Países Baixos, en Bélxica e no Luxemburgo.

Seguir lendo

Pode unha máquina computacional ser libre? (I): Que é unha máquina computacional?

[Esta é unha tradución autorizada da primeira parte do artigo orixinal de 10 de xaneiro de 2018 ¿Puede ser libre una máquina computacional?, de Gonzalo Génova, publicada en Naukas e reeditada en tres partes no seu blog persoal, De máquinas e intenciones.]

Robot

En xeral, enténdese que un robot é un trebello mecánico que está controlado por un programa de ordenador ou por un conxunto de programas. O aspecto físico é secundario: o robot pode asemellarse a un ser humano (adóitase falar de androide masculino ou xinoide feminina), pero tamén pode ser simplemente un brazo mecánico ou un electrodoméstico de cociña (por exemplo, unha máquina programable para facer pan da casa); mesmo pode ser un robot «virtual» que habita na Rede. Tamén é secundario o feito de que o robot estea feito de materiais inorgánicos, materiais orgánicos ou unha mestura de ambos. O esencial é que un robot está controlado por un programa executado nun ordenador, é dicir, o robot é unha máquina algorítmica ou computacional. Diferénciase doutras máquinas (como un motor de combustión interna, un telescopio ou unha vella radio de transistores) en que o seu funcionamento está codificado nun programa que é relativamente doado de cambiar, sobre todo se o comparamos con aquelas máquinas cuxo funcionamento é invariable.

E que é un programa? Un programa, ou mellor, un algoritmo, é en poucas palabras un procedemento «mecánico» (é dicir, baseado en regras obedecidas cegamente) que obtén un determinado resultado nun número finito de pasos. É coma unha receita de cociña na cal todos os pasos están perfectamente detallados e non se deixa nada á interpretación do cociñeiro. Se ben os científicos da computación aínda non acadaron un consenso universal verbo da definición de algoritmo, si se admite que un elemento esencial da definición é que todo algoritmo debe ter un obxectivo ben definido.1 Un programa non se limita a facer cousas, senón que as fai cun determinado propósito.

Seguir lendo

Teoría de xogos (XXIV): A guerra de sexos (II)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 25 de abril de 2011 Teoría de juegos XXIV – La guerra de sexos (y II), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XXIII): A guerra de sexos (I).]

No último artigo quedamos coa gana de ver como se solucionaba a guerra de sexos entre Ana e Alberte… pois ben, vamos alá.

ParellaComezamos lembrando a matriz de pagamentos que propuxeramos:

Ana
Gusta Odia
Alberte Gusta 1, 1 3, 2
Odia 2, 3 0, 0

Se non tes fresco aquel primeiro artigo, convén que o refresques.

Solución Maximin

Se ambos os xogadores aplicaren unha estratexia Maximin, Alberte escollerá Tenis e Ana escollerá Discoteca. Non imos contar como chegamos a esa conclusión porque a estratexia Maximin xa a contamos antes. Se alguén quere resolvelo como exercicio nos comentarios, será benvido; se non, que o resolva cada un na cabeza.

O caso é que ambos os dous cobran 1, polo que non semella unha solución moi boa, non si? Ben, xa dixemos que Maximin era unha estratexia conservadora… Ademáis, é unha situación inestable: calquera dos dous mellora se cambia a súa decisión.

Equilibrio de Nash en estratexias puras

Neste xogo existen dous equilibrios de Nash en estratexias puras: (Tenis, Tenis) e mais (Discoteca, Discoteca). Novamente, se non tes claro por que eses son equilibrios de Nash, revisa o artigo correspondente e resólveo como exercicio nos comentarios se queres.

Seguir lendo

Breve historia do metro (XIII): A herdanza da expedición

[Esta é unha tradución adaptada do artigo orixinal de 13 de novembro de 2015 Breve historia del metro (13), de Juan de Juan, que pode lerse nesta ligazón.]

[O artigo previo da serie é Breve historia do metro (XII): O pasamento de Méchain.]

Base du système métrique décimalO 8 de outubro de 1804 chegaron a París as novas do pasamento de Méchain. Algunhas semanas despois, o seu fillo Augustin, que estivera con el nas súas derradeiras horas (e de feito tivera un ataque de nervios cando morreu), chegou á capital. O primeiro que fixo foi ir ver a Delambre para lle dar os papeis do seu pai que tiña el. O resto envioullos a viúva por correo catro meses máis tarde.

En xaneiro de 1806, coincidindo no tempo coa publicación dos principais opúsculos obituarios sobre Méchain, publicouse tamén o primeiro volume da obra de Delambre Base du système métrique décimal, «Base do sistema métrico decimal», na que o autor mencionaba a Méchain como o primeiro e principal membro da expedición do meridiano. Secasí, meses antes da publicación, Delambre fixera unha descuberta. Por mor das presións do editor (que quería publicar o primeiro volume o antes posible), Delambre deixara para outro momento a análise a fondo dos papeis de Méchain. Cando puido facelo, como dicimos pouco antes da publicación, decatouse da discrepancia das medicións de latitude feitas en diferentes puntos de Barcelona. E non soamente iso: co seu experto ollo de astrónomo viu que nos papeis podía apreciarse un esforzo sistemático, por parte do autor das notas, para encubrir tal discrepancia a outros ollos que non fosen os seus (os de Méchain).

Como amigo, Delambre sentiuse traizoado. Pero o peor problema tíñao como científico. O metro xa fora definido e esculpido en platino. O metro xa existía de xeito definitivo: acaso Delambre tiña a obriga moral de informar de que, en parte, o dito metro se baseaba en cálculos erróneos?

Seguir lendo

O movemento de partículas suspendidas en líquidos en repouso, consonte o esixido pola teoría cinético-molecular da calor

[Esta é unha tradución do artigo orixinal de 11 de maio de 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, de Albert Einstein, que pode lerse nesta ligazón. Hai dispoñible unha versión en pdf aquí. É o segundo artigo da serie Wunderjahr.]

titular

Neste traballo vaise amosar que, consonte a teoría cinético-molecular da calor, cando hai corpos de tamaño microscópico nunha suspensión líquida, estes deben experimentar movementos debidos ao movemento molecular da calor que poden ser comprobables facilmente coa axuda dun microscopio. É posible que os movementos que se van tratar aquí sexan idénticos ao denominado «movemento browniano»; porén, a información que puiden atopar verbo deste último foi tan inexacta que non podo aseguralo con fiúza.

Se realmente pode observarse o devandito movemento en consonancia coas regras que o predín, daquela a termodinámica clásica xa non poderá considerarse válida con precisión para porcións do espazo distinguibles microscopicamente, e será posible a determinación exacta do verdadeiro tamaño do átomo. Se, pola contra, a predición deste movemento resultase errónea, sería un importante argumento contra da interpretación cinético-molecular da calor. Seguir lendo

Teoría de xogos (XXIII): A guerra de sexos (I)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 18 de marzo de 2011 Teoría de juegos XXIII – La guerra de sexos (I), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XXII): «Stock options».]

O concepto que imos introducir hoxe xa apareceu moitas veces ao longo da serie, pero nunca lle puxemos nome explicitamente. Coma sempre, imos aproveitar para propor un xogo, analizalo empregando moitos dos conceptos que xa vimos e, polo camiño, explicar un novo: a asimetría.

O xogo que imos analizar hoxe é o da guerra de sexos.

A guerra de sexos existe desde sempre. [Fonte: Flickr de tnarik]
Ana e mais Alberte, que andan a facerse as beiras mutuamente, quererían coincidir na actividade desta tarde. Pero ao mesmo tempo cada un ten gustos diferentes, así que lles gustaría coincidir… pero na actividade que lle gusta a cada un. Por se máis adiante caes na tentación: non, non poden coordinarse previamente.

Vexamos cal é a matriz de recompensas.

Ana
Tenis Discoteca
Alberte Tenis 3, 2 1, 1
Discoteca 0, 0 2, 3

Cada un deles pode decidir ir ao Tenis ou á Discoteca. En cada cela da matriz pomos primeiro o pagamento de Alberte e logo o de Ana. Como diciamos, ambos a dous están a cortexarse mutuamente, así que o seu maior pagamento é cando coinciden na escolla (isto é, a diagonal da matriz). Pero claro, se coinciden facendo o que quere Alberte, el gana un pouquiño máis (3), mentres Ana gana moito pero non o máximo (2). Temos unha situación semellante se coinciden na discoteca.

Seguir lendo

O mapa da bioloxía, con subtítulos en galego!

Case un ano despois do mapa da química, continuando coa serie que comezaramos co mapa da física e co mapa das matemáticas, por fin foron aceptados os subtítulos en galego do vídeo de Dominic Walliman correspondente ao mapa da bioloxía, traducida por nós ao galego en novembro. Esperamos que che praza!

Para os poderes ver, xa o sabes: soamente tes de premer en «Configuración» e escollelos na opción «Subtítulos». Cóntanos o que che semellan!

O arduo camiño ao Nobel de Marie Curie

[Esta é unha tradución adaptada do artigo orixinal de 13 de xaneiro de 2011 Químicos Modernos: El arduo camino al Nobel de Marie Curie, de César Tomé López, que pode lerse nesta ligazón.]

O 10 de decembro de 1911, Marie Curie recibía o premio Nobel de química polos «servizos ao desenvolvemento da química grazas á descuberta dos elementos radio e polonio». Foi a primeira muller que recibiu un premio Nobel e a primeira persoa que recibiu dous (ela, Pierre Curie e mais Henri Becquerel compartiran o premio de física de 1903 polo seu traballo verbo da radiación). O impacto de Marie Curie no mundo científico e no papel das mulleres nel foi de tal magnitude que un dos catro obxectivos do Ano Internacional da Química 2011 (iyc2011 polas súas siglas en inglés, International Year of Chemistry 2011) foi celebrar o centenario do seu premio. Con este artigo Experientia docet rendíalle unha homenaxe e inauguraba a serie Químicos modernos que lles dedicou, co gallo do iyc2011, aos grandes persoeiros, moitos deles descoñecidos, da química do último século e medio.

Maria Salomea Skłodowska naceu o 7 de novembro de 1867 en Varsovia (Polonia). Ambos os seus pais eran mestres (súa nai morreu cando ela tiña dez anos) que souberon educar e motivar excepcionalmente a súa filla. Daquela Polonia era un estado súbdito de Rusia e as mulleres non tiñan acceso á educación superior, polo que en 1891 Maria decidiu unirse á súa irmá Bronia en París, matriculándose na Sorbona. Marie, xa co seu nome afrancesado, recibiu os seus títulos de física en 1893 e matemáticas en 1894 con cualificacións extraordinarias. A historia de como Marie chegou a graduarse con 27 anos nun país que non era o seu, nunha lingua que non era a súa e tendo de traballar para sobrevivir xa nos fala da extraordinaria muller que era.

Seguir lendo

Breve historia do metro (XII): O pasamento de Méchain

[Esta é unha tradución adaptada do artigo orixinal de 10 de novembro de 2015 Breve historia del metro (12), de Juan de Juan, que pode lerse nesta ligazón.]

[O artigo previo da serie é Breve historia do metro (XI): O metro fíxase por fin.]

Pierre François André Méchain saíu da misión do meridiano convertido no primeiro astrónomo de Francia. Pero nin superara a súa depresión (de feito, sentíase cada vez peor conforme era obxecto de homenaxes e admiracións) nin consecuentemente se sentía cómodo. Tentou superar todo aquilo convertendo o Observatorio parisiense no primeiro do mundo. Mercou excelentes telescopios, descubriu con eles dous novos cometas e observou os asteroides.

Un pouquiño máis abaixo na escala da fama estaba Jean-Baptiste Delambre. Menos laureado ca o seu compañeiro, recibiu secasí o importante encargo de escribir a historia da expedición do meridiano e a exposición dos seus resultados. O astrónomo amañouse para deseñar unha obra de dúas mil páxinas en tres volumes. Para a cal, obviamente, precisaba os datos de Méchain, non os resumos. Aquel proxecto converteu os dous astrónomos, que polo de pronto foran colegas malia todo, en inimigos. Por exemplo, cando en 1800 Delambre foi nomeado presidente provisional do Bureau des longitudes, Méchain atizou unha moi agre discusión sobre quen tiña de controlar os libros de contas da institución.

En 1799, Méchain foi nomeado testamenteiro de Borda e tivo lóxico acceso a todas as súas posesións. Entre elas atopou as cartas que intercambiaran Delambre, Borda e a súa propia muller. Lelas cambiouno completamente: deixou de ser aquela persoa apoucada, temorosa de ser descuberta nos seus erros, para converterse no típico científico rancoroso que cre merecer méritos que outros lle escamotean. Segundo el, as cartas demostraban que Delambre deseñara unha estratexia para facer máis triángulos ca el e para medir nós que lle correspondían a el, como Perpiñán. Como sabemos, iso non é verdade: se Delambre tivo de facer todas aquelas cousas, foi porque Méchain nin estaba nin o esperaban. Pero iso, a unha persoa que está afeita a refocilarse coas súas propias reflexións, tanto lle ten.

Seguir lendo