O disputado voto do señor Condorcet (I)

[Esta é unha tradución adaptada do artigo orixinal de 15 de novembro de 2017 El disputado voto del señor Condorcet (I), de Raúl Ibáñez Torres, que pode lerse nesta ligazón.]

Na nosa sociedade hai innumerables ocasións nas que un colectivo de persoas debe tomar decisións sobre diferentes alternativas que se lle presentan, como quen debe ser a persoa que preside unha nación ou o candidato ou candidata dun partido político, onde se celebrarán os seguintes Xogos Olímpicos, cal foi o mellor filme ou libro do ano, que empresa debe contratar unha comunidade de veciños para arranxar a fachada da súa casa ou que política debe seguir un determinado goberno, partido político ou empresa, e moitas outras cuestións semellantes.

Perante esta situación aparece a cuestión transcendental de como elixir a proposta que represente mellor as preferencias dos individuos do colectivo, é dicir, como converter as preferencias individuais nunha preferencia colectiva do mellor xeito posible.

El disputado voto del señor Cayo
Portada do libro «El disputado voto del señor Cayo» (Destino, 1978), do escritor Miguel Delibes, e cartel do filme homónimo de 1986 do director Antonio Giménez-Rico.

Aínda que poida semellar o contrario, pois as votacións son algo habitual na nosa vida cotiá, a cuestión non é precisamente sinxela. Para ilustrar isto imos amosar dous exemplos clásicos interesantes.

O primeiro é o paradoxo de Condorcet.

Seguir lendo

Advertisements

Teoría de xogos (XX): Os tenistas (II)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 7 de febreiro de 2011 Teoría de juegos XX – Los tenistas (y II), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XIX): Os tenistas (I).]

Cuncos
Vamos buscar o fondo…

No artigo anterior puxemos a Ana e a Alberte a xogar ao tenis e acabamos descubrindo que non tiñan unha estratexia pura que fose dominante, así que propuxemos unha estratexia mixta. Deste xeito, no canto de decidir sistematicamente unha das opcións, facíano cunha probabilidade p.

Contamos que John Nash demostrara que todos os xogos teñen, ao menos, un equilibrio de Nash en estratexias mixtas, pero que empregou unha demostración non construtiva, de maneira que non proporcionaba un método para achar ese equilibrio. Neste artigo veremos unha aproximación para atopar unha estratexia empregando o método do gradiente e veremos como interpretar ese método desde o punto de vista da teoría de xogos.

Método do gradiente

Se ben probablemente algúns dos nosos lectores coñecerán o método do gradiente, imos dedicarlle unhas alíneas polo ben daqueles que non o coñezan.

Seguir lendo

Teoría de xogos (XIX): Os tenistas (I)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 24 de xaneiro de 2011 Teoría de juegos XIX – Los tenistas (I), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XVIII): Escándalo de corrupción.]

Tenis

Case desde o comezo desta serie fomos propondo xogos, introducindo conceptos sinxelos sobre a teoría de xogos e aplicándollelos a eses xogos, e fomos perfeccionando o noso coñecemento dos xogos que estudabamos.

Hoxe imos introducir o concepto de estratexias mixtas e para isto imos convidar a Ana e mais Alberte a xogar ao tenis.

Sempre que lin algunha cousa verbo deste xogo ou algunha variación, foi con xogadores de béisbol que teñen de decidir se guindan unha bóla rápida ou unha lenta. Pero, como en España case non hai tradición beisboleira e nin sequera sei o que diferencia unha bóla rápida dunha lenta (supoño que unha irá a máis velocidade ca a outra, pero non sei como afecta iso), nós imos facer o xogo con tenistas.

Por suposto, non imos escribir un tratado sobre tenis (entre outras cousas porque, ademais, son bastante malo xogando), pero si imos empregar a súa terminoloxía para darlle cor ao artigo. Se ben espero que poidas seguir o texto sen problema ningún malia non coñeceres o argot tenístico, podes botarlle unha ollada á Galipedia ou ir ver algún partido e logo volver aquí.

Seguir lendo

Teoría de xogos (XVIII): Escándalo de corrupción

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 10 de xaneiro de 2011 Teoría de juegos XVIII – Escándalo de corrupción, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XVII): A caza do cervo.]

Hoxe empregaremos novas de actualidade para seguir avanzando na nosa serie de Teoría de xogos: un escándalo de corrupción.1 Veremos como se enfrontan a un escándalo de corrupción dous partidos políticos e como escollen a súa mellor acción utilizando a teoría de xogos.

Concello de Hamburgo

Aproveitaremos o xogo para presentar un par de conceptos novos, Maximin e Minimax, e veremos como estivemos empregándoos de xeito implícito ao longo da serie.

A situación é a seguinte: sorprendentemente, a un alcalde electo collérono aceptando subornos dun contratista (non sei se o sorprendente é que os aceptase ou que o collesen; que cada quen escolla). O asunto aínda non se fixo público, pero tanto o partido no poder (o Partido Laranxa ou PL) como a oposición (o Partido Amarelo ou PA) xa o coñecen e poden escoller entre tres opcións:

  • Condenar o asunto enerxicamente.
  • Ficar Calados, nin confirman nin desmenten.
  • Defender a actuación do alcalde.

Ademais, as eleccións están moi cerquiña, así que a posición que tome cada partido ante este asunto pode ser determinante. Nós tomaremos a posición do Partido Laranxa.

Seguir lendo

Teoría de xogos (XVII): A caza do cervo

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 3 de xaneiro de 2011 Teoría de juegos XVII – La caza del ciervo, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XVI): Dilema do prisioneiro iterativo (II).]

Antes de avanzarmos máis, imos presentar un xogo novo, intimamente relacionado co dilema do prisioneiro que viamos antes e que moitos consideran a mellor forma de modelar a cooperación social. O xogo chámase a caza do cervo.

Cervo
De verdade queres cazalo? [Fonte: Pixabay, dominio público]
Serviranos para afianzar os conceptos de equilibrio de Nash e estratexia dominante, e tamén para introducirmos un concepto novo: a suma cero.

O xogo di algo así: temos dous lobos, Rómulo e mais Remo, que poden decidir ir cazar un Coello ou cooperaren para cazar un Cervo.

Se un deles decide cazar un Coello, come. Non é festín ningún, pero vaia, come. Se ambos a dous deciden ir xuntos cazar un Cervo, aquilo é unha lupanda. Non soamente comen, senón que ademais obteñen enerxías sobrantes que poden dedicar a, por exemplo, a reprodución.

Pero, se un deles decide ir polo Cervo e o outro vai polo Coello, quen decidiu ir polo Cervo queda sen nada, porque el só non é quen a cazalo (porén, o seu «amigo», que foi polo Coello, si come).

Seguir lendo

Teoría de xogos (XVI): Dilema do prisioneiro iterativo (II)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 20 de decembro de 2010 Teoría de juegos XVI – Dilema del prisionero iterado (y II), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XV): Dilema do prisioneiro iterativo (I).]

Prisioneiro

Na primeira parte do artigo viamos o concepto de equilibrio de Nash, e semella que chegabamos á conclusión de que os únicos puntos estables da matriz de recompensas eran os ditos equilibrios de Nash.

Hoxe, tal e como adiantabamos, imos empregar a fonda relación que hai entre a evolución e os xogos para procurarmos unha mellor solución ao dilema do prisioneiro iterativo.

Lembremos a matriz de pagamentos que empregabamos:

Albert
Delata Cala
Anny Delata −6, −6 0, −10
Cala −10, 0 −1, −1

Algoritmo xenético

E, para demostrar esa relación, que hai mellor ca un algoritmo xenético? Como, probablemente, moitos lectores non coñecerán o concepto de «algoritmo xenético», ímolo introducir brevemente á vez que o empregamos no noso problema particular.

Seguir lendo

Os ósos de Napier, a multiplicación árabe e mais ti

[Esta é unha tradución adaptada do artigo orixinal de 5 de outubro de 2016 Los huesos de Napier, la multiplicación árabe y tú, de Raúl Ibáñez Torres, que pode lerse no Cuaderno de Cultura Científica da upv/ehu.]

Neste paseo que comezamos nas dúas entradas anteriores desta «saga» sobre diferentes métodos de multiplicación que se desenvolveron ao longo da historia da humanidade, e que nos levou dos algoritmos que empregaron os babilonios e os exipcios ata os métodos de multiplicar que continuaron a usar os campesiños rusos ata recentemente, agora chegou o momento de falarmos da denominada multiplicación por celosía, ou multiplicación árabe, e da súa relación co noso algoritmo de multiplicación moderno.

Quen non puido ler os artigos anteriores pode facelo aquí:

  1. Soñan os babilonios con multiplicacións eléctricas?
  2. Multiplicar é doado: dos exipcios aos campesiños rusos

Pero iniciemos esta nova xornada do paseo na sala 28 (dedicada á Idade Moderna) do Museo Arqueolóxico Nacional (Museo Arqueológico Nacional) de Madrid. Esta sala contén o chamado ábaco neperiano, que consiste, como se ve na imaxe de abaixo, nun pequeno moble de madeira con incrustacións de óso con trinta caixóns no seu interior. Neles gárdanse as fichas dos dous ábacos que deseñou o matemático escocés John Napier (1550–1617), cuxo nome latinizado é Ioannes Neper e que foi o matemático que inventou os logaritmos. Un destes ábacos é coñecido como os ósos de Napier e del falaremos neste artigo; o outro, de tarxetas, chámase promptuarium (este é o único exemplo coñecido deste tipo de ábaco). Sobre este último, podes ler un artigo de Ángel Requena con máis información.1

imagen-1
Estoxo de madeira que contén os dous ábacos que deseñou John Napier. O seu interior consta de 30 caixóns, os de arriba conteñen as 60 fichas do ábaco «ósos de Napier» e os de abaixo as 300 fichas do «promptuarium». Foto de Raúl Fernández para o Museo Arqueolóxico Nacional.

Seguir lendo

Teoría de xogos (XV): Dilema do prisioneiro iterativo (I)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 13 de decembro de 2010 Teoría de juegos XV – Dilema del prisionero iterado (I), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XIV): Dilema do prisioneiro.]

Cárcere

No último artigo da serie vimos o dilema ao que se enfrontaban dous (presuntos… a ver se vou acabar eu no caldeiro por prexulgalos) criminais moi perigosos chamados Anny e Albert. Un dos aspectos máis importantes daquel xogo era que soamente se xogaba unha vez. Ben, pois hoxe ímolo xogar de xeito repetitivo, a ver se o resultado cambia. (Pois claro que cambia! Se non, non lle dedicariamos un artigo…)

Aproveitaremos para aprender un concepto novo importantísimo, o equilibrio de Nash, e relacionaremos a serie aínda máis coa evolución e coa xenética. Dividiremos este artigo en dúas partes porque, se non, quedaría moi longo.

Como imos partir do dilema do prisioneiro, vamos lembrar a súa matriz de pagamentos para que non teñas de andar decote indo e volvendo daquel artigo.

Albert
Delata Cala
Anny Delata −6, −6 0, −10
Cala −10, 0 −1, −1

Seguir lendo

Teoría de xogos (XIV): Dilema do prisioneiro

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 29 de novembro de 2010 Teoría de juegos XIV – Dilema del prisionero, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XIII): Xogo do ditador.]

Bóla

Ao longo da serie xa vimos xogos finitos e xogos infinitos.

Xa vimos que un xeito de atopar unha estratexia óptima para os xogos finitos era facer o camiño inverso desde as follas, subindo pola árbore de decisión, ata a decisión inicial (ou empregando a indución, se era posible). Aquí empregamos «unha» e non «a» intencionalmente, porque xa vimos que, cando dicimos «óptima», hai que dicir con relación a que. Tamén vimos, durante a discusión do xogo do cempés, que a estratexia que propuñamos non acababa de encaixar cos resultados empíricos. E ademais os empíricos eran mellores!

No futuro, dedicaremos máis artigos a enumerar e formalizar eses procedementos para atopar os óptimos, pero antes queremos dedicar un par de artigos (ou seica algún máis) a introducir algunha cousa máis e, de camiño, atopar estratexias para os xogos infinitos.

Para isto partiremos dun xogo que, por pouco que escoitases falar de teoría de xogos, seguro que oíches algunha vez: o dilema do prisioneiro.

Seguir lendo

Teoría de xogos (XIII): Xogo do ditador

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 22 de novembro de 2010 Teoría de juegos XIII – Juego del dictador, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XII): Xogo do ultimato.]

dominate-2340207_1280

No artigo anterior da serie planteábase un novo xogo: o xogo do ditador. Repasemos as regras: tiñamos 100 € e debiamos decidir con cantos cartos quedabamos e cantos lle dabamos a Alberte.

No artigo orixinal en El Cedazo houbo 38 participantes e o histograma das decisións que tomaron é o seguinte (mídese a cantidade coa que queda cada xogador):

Fai falla que vos diga cal é o resultado teórico óptimo? Polo si ou polo non: Ana queda con 100 €, que é o seu beneficio máximo, e a Alberte que lle dean.

Cualitativamente, era obvio que habería un pico no 100… O que seica non esperaban moitos é que houbese un pico tan pronunciado no 50 e moitos valores dispersos entre 50 e 100. Mesmo algún por baixo de 50!

Por que hai tanta discrepancia, neste e noutros xogos, entre o resultado teórico e o resultado empírico? Iso é o que veremos neste artigo. Imos formalizar outros poucos conceptos que, aínda que xa os empregamos ao longo da serie, foi de xeito implícito ou informal. Seguir lendo