Relatividade sen fórmulas (IX): Paradoxo dos xemelgos

[Esta é unha tradución adaptada do artigo orixinal de 13 de xuño de 2007 Relatividad sin fórmulas – Paradoja de los gemelos, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

[O artigo previo da serie é Relatividade sen fórmulas (VIII): Paradoxo do corredor.]

A serie de Relatividade sen fórmulas comezou nesta entrada. Non ten moito sentido que leas este artigo sen leres antes os conceptos básicos da serie: non che serviría de moito.

No artigo anterior falamos dun dos dous paradoxos máis coñecidos da relatividade xeral: o do corredor ou do pau no celeiro. Hoxe imos falar doutro, máis complexo pero máis interesante: o dos xemelgos. Para entendérelo, espero que che quedase clara a entrada sobre a adición de velocidades, pois naquel artigo hai conceptos importantes que aplicaremos aquí.

O paradoxo dos xemelgos

O paradoxo, basicamente, é o seguinte. Supoñamos que hai dous xemelgos idénticos. Un deles decide facer unha viaxe ata o planeta (digamos) Einstenón, que está a 10 anos luz da Terra, e viaxa a unha velocidade moi grande (digamos que ao 87 % da velocidade da luz). Daquela, visto desde a Terra, o tempo do xemelgo viaxeiro transcorre moi lentamente, de xeito que, ao volver, no canto de pasar moitos anos, para el pasaron poucos e é novo, mentres o xemelgo que quedou na Terra é vello.

Pero, desde o sistema de referencia do xemelgo viaxeiro, é o xemelgo que queda na Terra o que se move, de maneira que o tempo pasa máis lentamente para el: é o que queda na Terra o que debería ser novo cando se volven a atopar. Cando se miran á cara, cal é novo e cal é vello? Está moi ben iso de dicir que «en cada sistema de referencia, o outro é novo e eu son vello», pero que pasa?, ambos lle din ao outro «véxote moi novo»?
Seguir lendo