Teoría de xogos (IX): Dous terzos da media (II)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 25 de outubro de 2010 Teoría de juegos IX – Dos tercios de la media (y II), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (VIII): Dous terzos da media (I).]

MísilesNa primeira parte do artigo propuxemos o xogo e agora imos ver os resultados e a súa solución teórica e a aproveitar esa discusión como escusa para presentar algúns conceptos máis.

Recapitulemos: tratábase de dicir un número que resultase ser dous terzos da media de todos os números ditos polos xogadores (incluído o noso).

Os números que se dixeron na versión orixinal deste artigo en El Cedazo foron: 1, 1, 1, 1, 1, 1, 2, 5, 7, 7, 9, 9, 10, 10, 12, 12, 13, 13, 14, 15, 16, 18, 18, 18, 18, 22, 22, 22, 22, 22, 22, 22, 25, 30, 32, 33, 33, 33, 33, 34, 35, 40, 42, 49, 55, 69, 87, 97 e 100. A media é 24,755 que, multiplicada por 23, é 16,503, arredondando a 17. Consecuentemente, os ganadores foron os que dixeron «16» e «18».1

Resultado teórico

O resultado teórico óptimo pode atoparse por unha sorte de «redución ao absurdo indutiva».

Seguir lendo

Advertisements