Relatividade sen fórmulas (VIII): Paradoxo do corredor

[Esta é unha tradución adaptada do artigo orixinal de 7 de xuño de 2007 Relatividad sin fórmulas – Paradoja del corredor, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

[O artigo previo da serie é Relatividade sen fórmulas (VII): Adición de velocidades.]

Con este artigo comezabamos a serie de Relatividade sen fórmulas. Non vou lembrar todos os demais porque, francamente, se aínda non os liches, deberías facer un clic na ligazón e comezar desde o principio. Non ten moito sentido que empecemos a discutir aparentes paradoxos que se deducen da Teoría da Relatividade Especial se non estamos na mesma onda con relación á teoría.

Ímoslles dedicar un par de entradas a dous paradoxos moi coñecidos, un relativamente sinxelo e outro máis complexo. Espero que vexas que os «paradoxos relativistas» son paradoxos por semellaren absurdos, pero non son realmente absurdos: semella que hai algo que non encaixa, pero todo ten un perfecto sentido se o miramos con coidado. O problema, coma sempre, é que a nosa intuición se desenvolveu nun mundo de cousas que se moven devagar, de xeito que aquilo que nos semella «evidente» é evidente se as cousas non van moi rapidamente.

O primeiro paradoxo que discutiremos é o chamado do pau e o celeiro, da escada e o celeiro, do corredor e con outros nomes. Por suposto, nós empregaremos a Alberte e mais a Ana para describirmos a situación. Veremos se, en primeiro lugar, ves o paradoxo e se, en segundo lugar, podo convencerte de que, realmente, todo encaixa. Seguir lendo

Advertisements

Relatividade sen fórmulas (VII): Adición de velocidades

[Esta é unha tradución adaptada do artigo orixinal de 3 de xuño de 2007 Relatividad sin fórmulas – Adición de velocidades, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

Iniciamos esta serie de Relatividade sen fórmulas falando da situación da física cando Einstein sae a escena, para discutirmos despois os seus postulados, a dilatación do tempo, a relatividade da simultaneidade, a contracción da lonxitude e mais o aumento da masa. Continuamos hoxe con outra consecuencia da teoría que vai contra da nosa intuición: a adición de velocidades.

Esta entrada é bastante abstracta; ademais, ten en conta que, ao non empregarmos fórmulas, non poderemos demostrar resultados exactos. Lembra que o obxectivo desta serie non é convencerte de que os efectos relativistas teñen un ou outro valor, senón de que as cousas «raras» que ocorren na relatividade son unha consecuencia directa dos postulados de Einstein.

En primeiro lugar, se entendiches os artigos anteriores, espero que vexas inmediatamente que a suma de velocidades «intuitiva» (newtoniana) é incompatible de vez coa relatividade.

A teoría clásica (newtoniana), que é a que damos por certa intuitivamente, di o seguinte. Supoñamos que os nosos observadores, Ana e Alberte, se atopan, coma sempre, no espazo, lonxe de calquera punto de referencia e influencia exterior. E supoñamos que Alberte se afasta de Ana a 200 000 km/s e que ten unha laranxa na man.

Seguir lendo

Relatividade sen fórmulas (VI): Aumento da masa

[Esta é unha tradución adaptada do artigo orixinal de 28 de maio de 2007 Relatividad sin fórmulas – Aumento de masa, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

Na serie Relatividade sen fórmulas comezamos coa situación da física cando xorde a teoría da relatividade especial, para despois seguirmos cos postulados de Einstein, a dilatación do tempo, a relatividade da simultaneidade e, finalmente, a contracción da lonxitude. Hoxe continuamos a serie con outra consecuencia moi interesante dos postulados de Einstein: o aparente aumento da masa coa velocidade. Se non liches os artigos anteriores, comeza desde o principio ou vas estar bastante perdido.

Ben; en primeiro lugar, unha aclaración: estritamente, o que sucede cando algo se move moi rapidamente é que o seu momento lineal (cantidade de movemento) segue unha fórmula que non é a newtoniana senón a relativista. Porén, esta fórmula é a mesma que resultaría de empregarmos o concepto newtoniano de cantidade de movemento pero variando a masa do obxecto. Algún físico pode desgustarse ao escoitarnos falar do «aumento da masa» pero, como ninguén emprega o concepto de momento lineal na vida real e si o de masa, e o efecto é o mesmo, continuaremos a falar de «masa relativista» e «aumento da masa», aínda que non sexa estritamente correcto falar nestes termos.

Dito isto, se estás preparado e coa mente clara, comecemos a realizar os nosos experimentos mentais con Ana e mais Alberte, os nosos «observadores ficticios», para ver como tiramos conclusións do que ve cada un deles cando se moven moi rapidamente o un con relación ao outro. No experimento de hoxe, tanto Ana como Alberte teñen nas mans unha bóla de birlos cada un (ambas as dúas idénticas).

Seguir lendo

Relatividade sen fórmulas (V): Contracción da lonxitude

[Esta é unha tradución adaptada do artigo orixinal de 24 de maio de 2007 Relatividad sin fórmulas – Contracción de la longitud, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

Despois de falarmos sobre a situación da física cando xorde a Teoría da Relatividade Especial, os postulados de Einstein, a dilatación do tempo e mais a relatividade da simultaneidade, na entrega de hoxe da serie Relatividade sen fórmulas imos estudar outra consecuencia lóxica e inevitable dos postulados: a contracción da lonxitude.

Se non liches as entradas anteriores, deixa este artigo e comeza desde o principio ou, probablemente, non saberás cousas que damos por sabidas. De verdade, é moito mellor que vaias por orde.

Espero que, coma sempre, vexas que esta conclusión aparentemente «rara» é moi lóxica se estás de acordo coas conclusións que extraemos nos artigos anteriores (e, por suposto, considerando que os postulados son verdadeiros, pois obtivémolo todo a partir deles).

Volvamos aos nosos observadores ficticios no espazo, Ana e Alberte. No experimento mental de hoxe a situación é a seguinte: no espazo hai unha lámpada, unha pantalla, Ana e mais Alberte. Alberte móvese cara aos demais obxectos, que están todos en repouso os uns con relación aos outros. Deste xeito, Ana ve a lámpada e a pantalla en repouso mentres Alberte ve a lámpada e a pantalla (e a Ana) movéndose cara a el.

Seguir lendo

Relatividade sen fórmulas (IV): Relatividade da simultaneidade

[Esta é unha tradución adaptada do artigo orixinal de 21 de maio de 2007 Relatividad sin fórmulas – Relatividad de la simultaneidad, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

Nesta terceira entrega da serie Relatividade sen fórmulas, despois do limiar, os postulados de Einstein e mais a dilatación do tempo, centrarémonos noutro aspecto interesante da teoría: o que se adoita chamar relatividade da simultaneidade.

Se comprendiches os artigos anteriores, xa es consciente de que, se aceptamos os postulados de Einstein, o tempo non é absoluto: o que mide un observador é o seu tempo e outros observadores poden medir tempos diferentes do seu se se moven con relación a el. Pero unha consecuencia interesante da teoría é que o que varía dependendo do observador xa non é tan só a dura dun intervalo: tamén cambia o concepto de sucesos simultáneos.

Dito doutro xeito: non ten sentido dicir que dúas cousas «ocorren á vez». Podemos dicir que eu vexo que dous sucesos ocorren á vez, pero non podemos ir alén. Talvez eu sexa o único que os ve ocorrer á vez e todos os demais observadores vexan que unha cousa sucede antes ca a outra.

Soa raro? Unha vez máis, vexamos como é unha consecuencia lóxica e inevitable dos postulados de Einstein (que supoño que xa liches e entendiches; se non, volve a aquel artigo antes de seguires lendo).

Seguir lendo

Relatividade sen fórmulas (III): Dilatación do tempo

[Esta é unha tradución adaptada do artigo orixinal de 18 de maio de 2007 Relatividad sin fórmulas – Dilatación del tiempo, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

Despois de falarmos da situación da física do movemento e das ondas a principios do século xix e dos postulados de Einstein, neste terceiro artigo da serie Relatividade sen fórmulas comezaremos a tirar conclusións deses postulados. Se aínda non liches os artigos anteriores da serie, recoméndoche encarecidamente que o fagas, ou este (e os seguintes) poden resultarche incomprensibles. Ademais, non imos repetir aquí as advertencias acerca do contido desta serie: le os artigos anteriores para saberes que esperar e que non esperar desta serie de entradas.

Hoxe ímonos centrar nunha consecuencia inmediata dos postulados de Einstein: o que adoita chamarse «dilatación do tempo». Para isto, imos realizar un experimento mental no cal, por suposto, van participar Ana e mais Alberte, os nosos «observadores relativistas» ficticios.

Supoñamos que Ana e Alberte se atopan no baleiro do espazo, lonxe de calquera outro obxecto, e que se moven o un con relación ao outro a unha velocidade constante. Consonte os postulados que enunciamos no artigo anterior, non ten sentido preguntar se Alberte se move e Ana está quieta ou se é ao revés. Simplemente, móvense o un con relación ao outro.

Por certo, ten en conta unha cousa: na realidade, moitos sistemas de referencia non son inerciais (non se moven a unha velocidade constante ou están en repouso), conque si se sabe quen se move. Por exemplo, se Ana comeza a acelerar ata que se move a unha determinada velocidade con relación a Alberte, que nunca acelerou, o que dicimos será certo, pero daquela ambos saberán que é Alberte o que «ten razón», pois é Ana a que comezou a moverse. O «non saber quen se move e quen non» só serve se os dous sistemas son inerciais.

O que imos demostrar con este experimento mental é que, se aceptamos os dous postulados de Einstein, dedúcese de xeito lóxico e inevitable que Ana e Alberte non miden o tempo igual.

Seguir lendo

Relatividade sen fórmulas (II): Os postulados

[Esta é unha tradución adaptada do artigo orixinal de 16 de maio de 2007 Relatividad sin fórmulas – Los postulados, de Pedro Gómez-Esteban González, que pode lerse nesta ligazón.]

No primeiro artigo desta serie sobre a Teoría Especial da Relatividade falamos da situación da física atinente ao movemento e ás ondas a principios do século xx. Neste segundo artigo imos seguir avanzando pouco e pouco, sentando as bases para, máis adiante, extraermos conclusións: falaremos acerca dos dous postulados nos que Einstein basea a súa teoría.

Os avisos oportunos: esta serie segue o lema de antes simplista ca incomprensible, conque, se queres exactitude e corrección extremas, mellor marchas a outro sitio. En segundo lugar, esta serie demórase un certo tempo en chegar ao «divertido» da relatividade (creo que o comezaremos na seguinte entrega), pero tes de ter paciencia e entender ben as bases antes de chegarmos ao miolo da teoría.

Dito isto, hoxe simplemente imos deixar ben claros os dous postulados que establece Einstein para desenvolver a súa Teoría Especial. Son moi sinxelos e, ao principio, pode semellar que non son tan diferentes dos da física clásica, pero revolucionarían o noso coñecemento do Universo:

  1. Todos os sistemas de referencia inerciais son equivalentes.
  2. A velocidade da luz no baleiro é sempre a mesma, independentemente de quen a emita e quen a mida.

A grandeza da TRE é a cantidade inxente de información que extrae destes simples postulados. Pode semellar incrible, pero a equivalencia entre masa e enerxía, a dilatación do tempo, a contracción das lonxitudes… todo se deduce, dun xeito relativamente sinxelo, destas dúas simples premisas.

Seguir lendo