Teoría de xogos (XIX): Os tenistas (I)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 24 de xaneiro de 2011 Teoría de juegos XIX – Los tenistas (I), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XVIII): Escándalo de corrupción.]

Tenis

Case desde o comezo desta serie fomos propondo xogos, introducindo conceptos sinxelos sobre a teoría de xogos e aplicándollelos a eses xogos, e fomos perfeccionando o noso coñecemento dos xogos que estudabamos.

Hoxe imos introducir o concepto de estratexias mixtas e para isto imos convidar a Ana e mais Alberte a xogar ao tenis.

Sempre que lin algunha cousa verbo deste xogo ou algunha variación, foi con xogadores de béisbol que teñen de decidir se guindan unha bóla rápida ou unha lenta. Pero, como en España case non hai tradición beisboleira e nin sequera sei o que diferencia unha bóla rápida dunha lenta (supoño que unha irá a máis velocidade ca a outra, pero non sei como afecta iso), nós imos facer o xogo con tenistas.

Por suposto, non imos escribir un tratado sobre tenis (entre outras cousas porque, ademais, son bastante malo xogando), pero si imos empregar a súa terminoloxía para darlle cor ao artigo. Se ben espero que poidas seguir o texto sen problema ningún malia non coñeceres o argot tenístico, podes botarlle unha ollada á Galipedia ou ir ver algún partido e logo volver aquí.

Seguir lendo

Advertisements

Teoría de xogos (XVIII): Escándalo de corrupción

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 10 de xaneiro de 2011 Teoría de juegos XVIII – Escándalo de corrupción, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XVII): A caza do cervo.]

Hoxe empregaremos novas de actualidade para seguir avanzando na nosa serie de Teoría de xogos: un escándalo de corrupción.1 Veremos como se enfrontan a un escándalo de corrupción dous partidos políticos e como escollen a súa mellor acción utilizando a teoría de xogos.

Concello de Hamburgo

Aproveitaremos o xogo para presentar un par de conceptos novos, Maximin e Minimax, e veremos como estivemos empregándoos de xeito implícito ao longo da serie.

A situación é a seguinte: sorprendentemente, a un alcalde electo collérono aceptando subornos dun contratista (non sei se o sorprendente é que os aceptase ou que o collesen; que cada quen escolla). O asunto aínda non se fixo público, pero tanto o partido no poder (o Partido Laranxa ou PL) como a oposición (o Partido Amarelo ou PA) xa o coñecen e poden escoller entre tres opcións:

  • Condenar o asunto enerxicamente.
  • Ficar Calados, nin confirman nin desmenten.
  • Defender a actuación do alcalde.

Ademais, as eleccións están moi cerquiña, así que a posición que tome cada partido ante este asunto pode ser determinante. Nós tomaremos a posición do Partido Laranxa.

Seguir lendo

Teoría de xogos (XVII): A caza do cervo

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 3 de xaneiro de 2011 Teoría de juegos XVII – La caza del ciervo, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XVI): Dilema do prisioneiro iterativo (II).]

Antes de avanzarmos máis, imos presentar un xogo novo, intimamente relacionado co dilema do prisioneiro que viamos antes e que moitos consideran a mellor forma de modelar a cooperación social. O xogo chámase a caza do cervo.

Cervo
De verdade queres cazalo? [Fonte: Pixabay, dominio público]
Serviranos para afianzar os conceptos de equilibrio de Nash e estratexia dominante, e tamén para introducirmos un concepto novo: a suma cero.

O xogo di algo así: temos dous lobos, Rómulo e mais Remo, que poden decidir ir cazar un Coello ou cooperaren para cazar un Cervo.

Se un deles decide cazar un Coello, come. Non é festín ningún, pero vaia, come. Se ambos a dous deciden ir xuntos cazar un Cervo, aquilo é unha lupanda. Non soamente comen, senón que ademais obteñen enerxías sobrantes que poden dedicar a, por exemplo, a reprodución.

Pero, se un deles decide ir polo Cervo e o outro vai polo Coello, quen decidiu ir polo Cervo queda sen nada, porque el só non é quen a cazalo (porén, o seu «amigo», que foi polo Coello, si come).

Seguir lendo

Teoría de xogos (XVI): Dilema do prisioneiro iterativo (II)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 20 de decembro de 2010 Teoría de juegos XVI – Dilema del prisionero iterado (y II), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XV): Dilema do prisioneiro iterativo (I).]

Prisioneiro

Na primeira parte do artigo viamos o concepto de equilibrio de Nash, e semella que chegabamos á conclusión de que os únicos puntos estables da matriz de recompensas eran os ditos equilibrios de Nash.

Hoxe, tal e como adiantabamos, imos empregar a fonda relación que hai entre a evolución e os xogos para procurarmos unha mellor solución ao dilema do prisioneiro iterativo.

Lembremos a matriz de pagamentos que empregabamos:

Albert
Delata Cala
Anny Delata −6, −6 0, −10
Cala −10, 0 −1, −1

Algoritmo xenético

E, para demostrar esa relación, que hai mellor ca un algoritmo xenético? Como, probablemente, moitos lectores non coñecerán o concepto de «algoritmo xenético», ímolo introducir brevemente á vez que o empregamos no noso problema particular.

Seguir lendo

Teoría de xogos (XV): Dilema do prisioneiro iterativo (I)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 13 de decembro de 2010 Teoría de juegos XV – Dilema del prisionero iterado (I), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XIV): Dilema do prisioneiro.]

Cárcere

No último artigo da serie vimos o dilema ao que se enfrontaban dous (presuntos… a ver se vou acabar eu no caldeiro por prexulgalos) criminais moi perigosos chamados Anny e Albert. Un dos aspectos máis importantes daquel xogo era que soamente se xogaba unha vez. Ben, pois hoxe ímolo xogar de xeito repetitivo, a ver se o resultado cambia. (Pois claro que cambia! Se non, non lle dedicariamos un artigo…)

Aproveitaremos para aprender un concepto novo importantísimo, o equilibrio de Nash, e relacionaremos a serie aínda máis coa evolución e coa xenética. Dividiremos este artigo en dúas partes porque, se non, quedaría moi longo.

Como imos partir do dilema do prisioneiro, vamos lembrar a súa matriz de pagamentos para que non teñas de andar decote indo e volvendo daquel artigo.

Albert
Delata Cala
Anny Delata −6, −6 0, −10
Cala −10, 0 −1, −1

Seguir lendo

Teoría de xogos (XIV): Dilema do prisioneiro

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 29 de novembro de 2010 Teoría de juegos XIV – Dilema del prisionero, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XIII): Xogo do ditador.]

Bóla

Ao longo da serie xa vimos xogos finitos e xogos infinitos.

Xa vimos que un xeito de atopar unha estratexia óptima para os xogos finitos era facer o camiño inverso desde as follas, subindo pola árbore de decisión, ata a decisión inicial (ou empregando a indución, se era posible). Aquí empregamos «unha» e non «a» intencionalmente, porque xa vimos que, cando dicimos «óptima», hai que dicir con relación a que. Tamén vimos, durante a discusión do xogo do cempés, que a estratexia que propuñamos non acababa de encaixar cos resultados empíricos. E ademais os empíricos eran mellores!

No futuro, dedicaremos máis artigos a enumerar e formalizar eses procedementos para atopar os óptimos, pero antes queremos dedicar un par de artigos (ou seica algún máis) a introducir algunha cousa máis e, de camiño, atopar estratexias para os xogos infinitos.

Para isto partiremos dun xogo que, por pouco que escoitases falar de teoría de xogos, seguro que oíches algunha vez: o dilema do prisioneiro.

Seguir lendo

Teoría de xogos (XIII): Xogo do ditador

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 22 de novembro de 2010 Teoría de juegos XIII – Juego del dictador, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XII): Xogo do ultimato.]

dominate-2340207_1280

No artigo anterior da serie planteábase un novo xogo: o xogo do ditador. Repasemos as regras: tiñamos 100 € e debiamos decidir con cantos cartos quedabamos e cantos lle dabamos a Alberte.

No artigo orixinal en El Cedazo houbo 38 participantes e o histograma das decisións que tomaron é o seguinte (mídese a cantidade coa que queda cada xogador):

Fai falla que vos diga cal é o resultado teórico óptimo? Polo si ou polo non: Ana queda con 100 €, que é o seu beneficio máximo, e a Alberte que lle dean.

Cualitativamente, era obvio que habería un pico no 100… O que seica non esperaban moitos é que houbese un pico tan pronunciado no 50 e moitos valores dispersos entre 50 e 100. Mesmo algún por baixo de 50!

Por que hai tanta discrepancia, neste e noutros xogos, entre o resultado teórico e o resultado empírico? Iso é o que veremos neste artigo. Imos formalizar outros poucos conceptos que, aínda que xa os empregamos ao longo da serie, foi de xeito implícito ou informal. Seguir lendo

Teoría de xogos (XII): Xogo do ultimato

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 15 de novembro de 2010 Teoría de juegos XII – Juego del ultimátum, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XI): O problema das pensións.]

pexels-photo-462383

Rematamos o artigo anterior da serie preguntándonos se, aínda que sospeitásemos que o sistema público de pensións ía interromperse no futuro (en cuxo caso xa demostramos que a nosa mellor estratexia é interromperlo axiña nós mesmos), deixariamos a xeración anterior á nosa sen pensión de xubilación. Mesmo relendo artigos anteriores, como o xogo do cempés, lembraremos que o resultado empírico non encaixa de todo co resultado teórico previsto.

Neste artigo e no vindeiro veremos outra das explicacións. Farémolo en dous artigos porque, novamente, pedirémoslles aos lectores que participen no xogo e tiraremos despois as conclusións.

Xogo do ultimato

O xogo do ultimato é un xogo fundamentalmente empírico. O que se fai é pór a xogar un número determinado de persoas e logo tirar medidas sobre as súas accións.

É para dous xogadores, que xogan unha soa vez. Se xogan Ana e mais Alberte e o xogo comeza con 100 €, Ana debe facerlle unha oferta a Alberte: deses 100 €, con cantos queda Ana e con cantos queda Alberte (imos supor que soamente pode dicir cantidades enteiras, sen céntimos, para simplificar). Se Alberte acepta a oferta, faise así a repartición e listo; se Alberte rexeita a oferta, ambos marchan para a casa coas mans baleiras.

Seguir lendo

Teoría de xogos (XI): O problema das pensións

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 8 de novembro de 2010 Teoría de juegos XI – El problema de las pensiones, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (X): Xogo de confianza.]

pexels-photo-302083

Polo de pronto, empregamos todos os artigos para, primeiro, cubrirmos un xogo máis ou menos artificial, e logo dedicarlle unha parte do artigo a contarmos algunha situación real que puidésemos facer análoga ao xogo.

Hoxe ímoslle dedicar un artigo completo a unha situación real e logo farémoslle unha pequena análise: o problema das pensións. Primeiro contaremos como é, despois exporémolo coa linguaxe da teoría de xogos e resolverémolo, e logo tentaremos aplicarlle as súas conclusións ao problema real inicial.

Por certo, non esperedes que atopemos aquí a solución (se fose tan doado, alguén a atoparía xa hai tempo).

As pensións en España

Antes de comezarmos a tratar o tema, debemos contar como funciona o sistema de pensións en España. Non todos os países teñen un sistema coma o noso, así que a súa análise pode non ser igual.

Seguir lendo

Teoría de xogos (X): Xogo de confianza

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 1 de novembro de 2010 Teoría de juegos X – Juego de la confianza, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (IX): Dous terzos da media (II).]

Cartos

Levamos xa nove artigos na serie e xa introducimos unha morea de conceptos. Presentamos moitos xogos teóricos e asimilámolos a varios casos reais interesantes, como disputas comerciais, guerras, apostas, videoxogos…

Probablemente, ao comezares a serie pensarías que apenas contabamos nada, pero pouco e pouco fomos introducindo máis e máis conceptos… e aínda estamos co básico!

Hoxe imos introducir un novo xogo. Non estou seguro do seu nome, nin de se o ten, así que vou chamalo xogo de confianza, que é como o chama a Wikipedia (aínda que non é exactamente o mesmo que coñecía eu, este é unha xeneralización do da Wikipedia). O nome é un pouco ambiguo, porque hai moitos outros xogos nos que hai que decidir se confiar ou non no opoñente, pero vale.

Seguir lendo