Teoría de xogos (XXIII): A guerra de sexos (I)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 18 de marzo de 2011 Teoría de juegos XXIII – La guerra de sexos (I), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XXII): «Stock options».]

O concepto que imos introducir hoxe xa apareceu moitas veces ao longo da serie, pero nunca lle puxemos nome explicitamente. Coma sempre, imos aproveitar para propor un xogo, analizalo empregando moitos dos conceptos que xa vimos e, polo camiño, explicar un novo: a asimetría.

O xogo que imos analizar hoxe é o da guerra de sexos.

A guerra de sexos existe desde sempre. [Fonte: Flickr de tnarik]
Ana e mais Alberte, que andan a facerse as beiras mutuamente, quererían coincidir na actividade desta tarde. Pero ao mesmo tempo cada un ten gustos diferentes, así que lles gustaría coincidir… pero na actividade que lle gusta a cada un. Por se máis adiante caes na tentación: non, non poden coordinarse previamente.

Vexamos cal é a matriz de recompensas.

Ana
Tenis Discoteca
Alberte Tenis 3, 2 1, 1
Discoteca 0, 0 2, 3

Cada un deles pode decidir ir ao Tenis ou á Discoteca. En cada cela da matriz pomos primeiro o pagamento de Alberte e logo o de Ana. Como diciamos, ambos a dous están a cortexarse mutuamente, así que o seu maior pagamento é cando coinciden na escolla (isto é, a diagonal da matriz). Pero claro, se coinciden facendo o que quere Alberte, el gana un pouquiño máis (3), mentres Ana gana moito pero non o máximo (2). Temos unha situación semellante se coinciden na discoteca.

Seguir lendo

Advertisements

Teoría de xogos (XXI): O xogo do cempés con estratexias mixtas

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 21 de febreiro de 2011 Teoría de juegos XXI – Juego del ciempiés en estrategias mixtas, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (XX): Os tenistas (II).]

Cempés

O xogo do cempés é un dos que nos deu máis xogo ao longo da serie, así que imos dedicarlle un artigo completo a estudalo desde a nova perspectiva das estratexias mixtas.

Este artigo será relativamente curtiño e estivo a piques de ser incluído no anterior verbo dos tenistas. Nel non incluiremos conceptos novos, soamente darémoslle voltas ao que xa sabemos. Pero será preciso manexar probabilidades e darlle ao razoamento unha volta de porca que seica non é doada, por iso preferimos que teña o seu propio artigo.

Seguiremos deducindo sobre as regras que xa vimos na descrición do xogo, así que, se non o tes fresco, dedica uns minutos a repasalo aínda que sexa por riba.

Naquel artigo procurabamos unha solución teórica ao xogo, buscando o que debía facer Ana, e saíanos que debía Interromper na primeira quenda (de feito, poderiamos extrapolalo a decidir que calquera xogador, cando lle chegue a quenda, debe Interromper).

Pero semellaba que os experimentos non acompañaban esa dedución teórica e intentamos dicir «claro, é que os xogadores empíricos son irracionais»… pero aquilo non encaixaba. Non encaixaba porque nos decatamos de que os xogadores irracionais realmente ganaban máis ca os nosos xogadores teoricamente óptimos.

Así que o tentamos baixo a hipótese do home social. Se ben a algúns sérvelles esta aproximación, outros quedabamos co sabor agridoce de que aquilo tampouco terminaba de explicalo de todo; é coma se inventásemos un concepto novo para poder explicalo.

Pero xa aprendemos moitísimo desde entón. Agora sabemos que aquela «solución teórica» estaba a aplicar unha estratexia Maximin, que era conservadora.

Así que imos estudalo desde o punto de vista das estratexias mixtas. Á fin acabaremos vendo como incluso quen non amosa un comportamento social pode querer colaborar para maximizar o seu beneficio (o que chamabamos home superracional), esfumando a fronteira entre o home social e o home egoísta.

Seguir lendo

Teoría de xogos (XI): O problema das pensións

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 8 de novembro de 2010 Teoría de juegos XI – El problema de las pensiones, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (X): Xogo de confianza.]

pexels-photo-302083

Polo de pronto, empregamos todos os artigos para, primeiro, cubrirmos un xogo máis ou menos artificial, e logo dedicarlle unha parte do artigo a contarmos algunha situación real que puidésemos facer análoga ao xogo.

Hoxe ímoslle dedicar un artigo completo a unha situación real e logo farémoslle unha pequena análise: o problema das pensións. Primeiro contaremos como é, despois exporémolo coa linguaxe da teoría de xogos e resolverémolo, e logo tentaremos aplicarlle as súas conclusións ao problema real inicial.

Por certo, non esperedes que atopemos aquí a solución (se fose tan doado, alguén a atoparía xa hai tempo).

As pensións en España

Antes de comezarmos a tratar o tema, debemos contar como funciona o sistema de pensións en España. Non todos os países teñen un sistema coma o noso, así que a súa análise pode non ser igual.

Seguir lendo

Teoría de xogos (X): Xogo de confianza

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 1 de novembro de 2010 Teoría de juegos X – Juego de la confianza, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (IX): Dous terzos da media (II).]

Cartos

Levamos xa nove artigos na serie e xa introducimos unha morea de conceptos. Presentamos moitos xogos teóricos e asimilámolos a varios casos reais interesantes, como disputas comerciais, guerras, apostas, videoxogos…

Probablemente, ao comezares a serie pensarías que apenas contabamos nada, pero pouco e pouco fomos introducindo máis e máis conceptos… e aínda estamos co básico!

Hoxe imos introducir un novo xogo. Non estou seguro do seu nome, nin de se o ten, así que vou chamalo xogo de confianza, que é como o chama a Wikipedia (aínda que non é exactamente o mesmo que coñecía eu, este é unha xeneralización do da Wikipedia). O nome é un pouco ambiguo, porque hai moitos outros xogos nos que hai que decidir se confiar ou non no opoñente, pero vale.

Seguir lendo

Teoría de xogos (IX): Dous terzos da media (II)

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 25 de outubro de 2010 Teoría de juegos IX – Dos tercios de la media (y II), de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (VIII): Dous terzos da media (I).]

MísilesNa primeira parte do artigo propuxemos o xogo e agora imos ver os resultados e a súa solución teórica e a aproveitar esa discusión como escusa para presentar algúns conceptos máis.

Recapitulemos: tratábase de dicir un número que resultase ser dous terzos da media de todos os números ditos polos xogadores (incluído o noso).

Os números que se dixeron na versión orixinal deste artigo en El Cedazo foron: 1, 1, 1, 1, 1, 1, 2, 5, 7, 7, 9, 9, 10, 10, 12, 12, 13, 13, 14, 15, 16, 18, 18, 18, 18, 22, 22, 22, 22, 22, 22, 22, 25, 30, 32, 33, 33, 33, 33, 34, 35, 40, 42, 49, 55, 69, 87, 97 e 100. A media é 24,755 que, multiplicada por 23, é 16,503, arredondando a 17. Consecuentemente, os ganadores foron os que dixeron «16» e «18».1

Resultado teórico

O resultado teórico óptimo pode atoparse por unha sorte de «redución ao absurdo indutiva».

Seguir lendo

Teoría de xogos (VII): O xogo do cempés

[Esta é unha tradución autorizada de Ciención de Breogán, adaptada do artigo orixinal de 7 de outubro de 2010 Teoría de juegos VII – Juego del ciempiés, de Javier “J” Sedano, que pode lerse en El Cedazo. Toda a serie Teoría de juegos está publicada en forma de libro, dispoñible aquí.]

[O artigo previo da serie é Teoría de xogos (VI): Contar (II).]

Neste capítulo da serie presentamos un xogo introducido por primeira vez por Robert W. Rosenthal: o xogo do cempés.

TRUST 1210K POWERC@M OPTICAL ZOOM
Malia ser un bicho, é un dos máis entrañables. Alguén non tentou algunha vez atopar un para lle contar as patas? [Fonte: Image*After]
As regras do xogo son as seguintes:

  • Dous xogadores, Ana e mais Alberte, que, amais de xogaren con espellos, raios láser e pelotas ultrarrápidas, tamén se dedican aos cempés no lecer.
  • Comeza con dous montóns de moedas de 1 €. No primeiro montón hai 2 moedas e, no segundo, 0 moedas (si, son montóns pequeniños, xa medrarán). Ambos os dous ponse diante de Ana.
  • En cada quenda, o xogador ten dúas opcións:
    1. Pode quedar co montón grande e darlle o pequeno ao outro xogador.
    2. Ou pode darlle ambos os montóns ao outro xogador e que comece outra quenda.
  • Cada vez que un xogador escolle a opción 2, os montóns medran: unha moeda en cada montón.
  • Se o xogo acada as 100 roldas e ninguén decidiu nunca a opción 1, o xogo remata e ninguén gana nada.

Unha pausa duns minutos para pensares o que farías ti se foses un dos xogadores.

.

.

. Seguir lendo